Files
survive/gameelement/canvas.go
2024-11-21 16:35:36 -05:00

912 lines
23 KiB
Go

package gameelement
import (
"fmt"
"image"
"image/color"
"math"
"math/rand/v2"
"mover/assets"
"mover/elements"
"mover/fonts"
"mover/gamedata"
"mover/weapons"
"github.com/hajimehoshi/ebiten/v2"
"github.com/hajimehoshi/ebiten/v2/text"
"github.com/hajimehoshi/ebiten/v2/vector"
)
type Canvas struct {
Sprite *ebiten.Image
collisionMask *ebiten.Image
projectileMask *ebiten.Image
laserMask *ebiten.Image
heroCollisionMask *ebiten.Image
heroCollisionCpy *ebiten.Image
eventmap map[gamedata.GameEvent]func()
initialized bool
goblinspawned bool
goblindead bool
lastInputs gamedata.GameInputs
runtime float64
counter int
score int
splashes []*elements.Splash
hero *elements.Hero
charge *elements.Explosion
goblin *elements.FlyGoblin
enemies []elements.Enemies
projectiles []*elements.Projectile
laser *elements.Laser
gameover bool
lasercoords []gamedata.Coordinates
holster *weapons.Holster
}
func NewCanvas(a gamedata.Area) *Canvas {
c := &Canvas{
Sprite: ebiten.NewImage(a.Width, a.Height),
projectileMask: ebiten.NewImage(a.Width, a.Height),
collisionMask: ebiten.NewImage(a.Width, a.Height),
laserMask: ebiten.NewImage(a.Width, a.Height),
heroCollisionMask: ebiten.NewImage(48, 48),
heroCollisionCpy: ebiten.NewImage(48, 48),
hero: elements.NewHero(),
charge: elements.NewExplosion(),
laser: elements.NewLaser(gamedata.Coordinates{X: 320, Y: 240}, 0),
initialized: false,
gameover: false,
goblinspawned: false,
goblindead: false,
score: 0,
runtime: 0.,
counter: 0,
holster: weapons.NewHolster(),
}
c.laserMask.Clear()
c.eventmap = make(map[gamedata.GameEvent]func())
c.lasercoords = make([]gamedata.Coordinates, 4)
return c
}
func (c *Canvas) SetInputs(gi gamedata.GameInputs) {
c.lastInputs = gi
}
func (c *Canvas) Update() error {
if !c.initialized {
c.Initialize()
} else {
c.UpdateHero()
c.UpdateWeapons()
c.UpdateProjectiles()
c.UpdateCharge()
c.UpdateEnemies()
c.SpawnEnemies()
c.CleanupTargets()
c.UpdateSplashes()
c.CleanSplashes()
c.counter++
}
return nil
}
func (c *Canvas) Draw(drawimg *ebiten.Image) {
c.Sprite.Clear()
c.projectileMask.Clear()
//c.laserMask.Clear()
//vector.DrawFilledCircle(c.Sprite, float32(c.hero.Pos.X), float32(c.hero.Pos.Y), 100, color.White, true)
//render heor
c.hero.Draw()
op := &ebiten.DrawImageOptions{}
op.GeoM.Translate(c.hero.Pos.X-48/2, c.hero.Pos.Y-48/2)
c.Sprite.DrawImage(c.hero.Sprite, op)
//render weapon
if !c.gameover {
op.GeoM.Reset()
op.GeoM.Translate(0, -16)
op.GeoM.Rotate(c.lastInputs.ShotAngle)
op.GeoM.Translate(c.hero.Pos.X, c.hero.Pos.Y)
c.Sprite.DrawImage(assets.ImageBank[assets.Weapon], op)
}
//draw enemy shadows
for _, es := range c.enemies {
if es.GetEnemyState() < gamedata.EnemyStateExploding {
dx := float64(assets.ImageBank[assets.FlyEyeShadow].Bounds().Dx()) / 2
dy := float64(assets.ImageBank[assets.FlyEyeShadow].Bounds().Dy()) / 2
sx := float64(es.GetSprite().Bounds().Dx()) / 48
sy := float64(es.GetSprite().Bounds().Dy()) / 48
op := &ebiten.DrawImageOptions{}
op.GeoM.Translate(-dx, -dy)
op.GeoM.Scale(sx, sy)
op.GeoM.Translate(es.GetPosition().X, es.GetPosition().Y+float64(es.GetSprite().Bounds().Dx())/2)
c.Sprite.DrawImage(assets.ImageBank[assets.FlyEyeShadow], op)
}
}
//draw enemies
for _, e := range c.enemies {
e.Draw()
xshift := float64(e.GetSprite().Bounds().Dx() / 2)
yshift := float64(e.GetSprite().Bounds().Dy() / 2)
op := &ebiten.DrawImageOptions{}
op.GeoM.Translate(-xshift, -yshift)
op.GeoM.Rotate(e.GetAngle())
op.GeoM.Translate(e.GetPosition().X, e.GetPosition().Y)
c.Sprite.DrawImage(e.GetSprite(), op)
//do we need a health bar for this enemy?
if e.Health() > 0 {
hbWidth := float64(e.MaxHealth())*2 + 4
p1 := float64(e.GetSprite().Bounds().Dx())
p0 := e.GetPosition().X - p1/2
x0 := p0 - (hbWidth-p1)/2
y0 := e.GetPosition().Y - 2/3.*float64(e.GetSprite().Bounds().Dy())
vector.DrawFilledRect(c.Sprite, float32(x0), float32(y0), float32(e.MaxHealth())*2+4, 12, color.Black, true)
vector.DrawFilledRect(c.Sprite, float32(x0+2), float32(y0+2), float32(e.Health())*2, 8, color.RGBA{R: 0xff, G: 0x00, B: 0x00, A: 0xff}, true)
}
}
//draw projectiles
for _, p := range c.projectiles {
vector.DrawFilledCircle(c.projectileMask, float32(p.Pos.X), float32(p.Pos.Y), 3, color.White, true)
}
c.Sprite.DrawImage(c.projectileMask, nil)
//draw laser(s)
if c.laser.IsFiring() {
c.laser.Draw()
c.Sprite.DrawImage(c.laserMask, nil)
}
//c.Sprite.DrawImage(c.laser.Sprite, op)
vector.StrokeCircle(c.Sprite, float32(c.charge.Origin.X), float32(c.charge.Origin.Y), float32(c.charge.Radius), 3, color.White, true)
//TEMPORARY let's see how far off the beam we are
//vector.StrokeLine(c.Sprite, float32(c.lasercoords[2].X), float32(c.lasercoords[2].Y), float32(c.lasercoords[3].X), float32(c.lasercoords[3].Y), 2, color.White, true)
//let's render our laser 'splashes'
for _, sp := range c.splashes {
sp.Draw()
op := &ebiten.DrawImageOptions{}
op.GeoM.Translate(sp.GetPosition().X-128/2, sp.GetPosition().Y-128/2)
c.Sprite.DrawImage(sp.Sprite, op)
}
if !c.gameover {
c.runtime = float64(c.counter) / 60.
}
s := fmt.Sprintf("%02.3f", c.runtime)
if !c.gameover {
text.Draw(c.Sprite, "TIME: "+s, fonts.SurviveFont.Arcade, 640/2-250, 25, color.White)
text.Draw(c.Sprite, fmt.Sprintf("SCORE: %d", c.score*10), fonts.SurviveFont.Arcade, 640/2+100, 25, color.White)
} else {
if (c.counter/30)%2 == 0 {
text.Draw(c.Sprite, "TIME: "+s, fonts.SurviveFont.Arcade, 640/2-250, 25, color.White)
text.Draw(c.Sprite, fmt.Sprintf("SCORE: %d", c.score*10), fonts.SurviveFont.Arcade, 640/2+100, 25, color.White)
}
text.Draw(c.Sprite, "PRESS START TO TRY AGAIN", fonts.SurviveFont.Arcade, 640/2-150, 480/2, color.White)
}
op.GeoM.Reset()
drawimg.DrawImage(c.Sprite, op)
}
func (c *Canvas) Initialize() {
c.InitializeHero()
c.CleanSplashes()
c.enemies = c.enemies[:0]
c.gameover = false
c.initialized = true
c.score = 0
c.counter = 0
c.runtime = 0.
c.goblinspawned = false
c.goblindead = false
//temporary
c.hero.Action = elements.HeroActionDefault
c.holster.SetActiveWeapon(gamedata.WeaponTypeGun)
c.laser.SetFiring(false)
}
func (c *Canvas) UpdateHero() {
c.hero.Update()
if !c.gameover {
c.UpdateHeroPosition()
c.ComputeHeroCollisions()
}
}
func (c *Canvas) UpdateHeroPosition() {
if c.lastInputs.XAxis >= 0.15 || c.lastInputs.XAxis <= -0.15 {
c.hero.Left = c.lastInputs.XAxis < 0
c.hero.Pos.X += c.lastInputs.XAxis * 5
}
if c.lastInputs.YAxis >= 0.15 || c.lastInputs.YAxis <= -0.15 {
c.hero.Pos.Y += c.lastInputs.YAxis * 5
}
}
func (c *Canvas) ComputeHeroCollisions() {
for _, e := range c.enemies {
//compute collision with hero
if c.hero.Pos.X >= e.GetPosition().X-float64(e.GetSprite().Bounds().Dx())/2 && c.hero.Pos.X <= e.GetPosition().X+float64(e.GetSprite().Bounds().Dx())/2 &&
c.hero.Pos.Y >= e.GetPosition().Y-float64(e.GetSprite().Bounds().Dy())/2 && c.hero.Pos.Y <= e.GetPosition().Y+float64(e.GetSprite().Bounds().Dy())/2 &&
e.GetEnemyState() < gamedata.EnemyStateDying {
// target.Action < elements.MoverActionDying && g.hero.Action < elements.HeroActionDying {
c.heroCollisionMask.Clear()
c.heroCollisionMask.DrawImage(c.hero.Sprite, nil)
op := &ebiten.DrawImageOptions{}
op.GeoM.Reset()
op.Blend = ebiten.BlendSourceIn
op.GeoM.Translate((c.hero.Pos.X-e.GetPosition().X)-float64(e.GetSprite().Bounds().Dx())/2, (c.hero.Pos.Y-e.GetPosition().Y)-float64(e.GetSprite().Bounds().Dy())/2)
c.heroCollisionMask.DrawImage(e.GetSprite(), op)
if c.HasCollided(c.heroCollisionMask, 48*48*4) {
c.hero.SetHit()
c.gameover = true
if c.eventmap[gamedata.GameEventPlayerDeath] != nil {
c.eventmap[gamedata.GameEventPlayerDeath]()
}
}
}
}
}
func (c *Canvas) AddProjectiles() {
//add new projectiles
if c.lastInputs.Shot && c.counter%14 == 0 {
loc := gamedata.Coordinates{
X: c.hero.Pos.X,
Y: c.hero.Pos.Y,
}
angle := c.lastInputs.ShotAngle
velocity := 5.
c.projectiles = append(c.projectiles, elements.NewProjectile(loc, angle, velocity))
if c.hero.Upgrade {
c.projectiles = append(c.projectiles, elements.NewProjectile(loc, angle+math.Pi, velocity))
}
if c.eventmap[gamedata.GameEventNewShot] != nil {
c.eventmap[gamedata.GameEventNewShot]()
}
}
}
func (c *Canvas) InitializeHero() {
//recenter the hero
pos := gamedata.Coordinates{
X: float64(c.Sprite.Bounds().Dx() / 2),
Y: float64(c.Sprite.Bounds().Dy() / 2),
}
c.hero.SetOrigin(pos)
}
func (c *Canvas) UpdateProjectiles() {
i := 0
for _, p := range c.projectiles {
p.Update()
projectilevalid := true
if p.Pos.X < -640/2 || p.Pos.X > 1.5*640 || p.Pos.Y < -480/2 || p.Pos.Y > 1.5*480 {
projectilevalid = false
}
for _, e := range c.enemies {
if p.Pos.X >= e.GetPosition().X-float64(e.GetSprite().Bounds().Dx())/2 && p.Pos.X <= e.GetPosition().X+float64(e.GetSprite().Bounds().Dx())/2 &&
p.Pos.Y >= e.GetPosition().Y-float64(e.GetSprite().Bounds().Dy())/2 && p.Pos.Y <= e.GetPosition().Y+float64(e.GetSprite().Bounds().Dy())/2 &&
e.IsToggled() && e.GetEnemyState() < gamedata.EnemyStateDying {
c.collisionMask.Clear()
c.collisionMask.DrawImage(c.projectileMask, nil)
op := &ebiten.DrawImageOptions{}
op.GeoM.Reset()
op.Blend = ebiten.BlendSourceIn
op.GeoM.Translate(e.GetPosition().X-float64(e.GetSprite().Bounds().Dx())/2, e.GetPosition().Y-float64(e.GetSprite().Bounds().Dy())/2)
c.collisionMask.DrawImage(e.GetSprite(), op)
if c.HasCollided(c.collisionMask, 640*480*4) {
projectilevalid = false
e.SetHit()
if c.eventmap[gamedata.GameEventTargetHit] != nil {
c.eventmap[gamedata.GameEventTargetHit]()
}
}
}
}
if projectilevalid {
c.projectiles[i] = p
i++
}
}
for j := i; j < len(c.projectiles); j++ {
c.projectiles[j] = nil
}
c.projectiles = c.projectiles[:i]
}
func (c *Canvas) UpdateLaser() {
c.laser.Update()
c.laser.SetFiring(c.lastInputs.Shot)
if c.lastInputs.Shot {
c.laser.SetPosition(c.hero.Pos)
c.laser.SetAngle(c.lastInputs.ShotAngle)
c.laserMask.Clear()
lpos := c.laser.GetPosition()
op := &ebiten.DrawImageOptions{}
op.GeoM.Reset()
//op.GeoM.Translate(-float64(c.laser.Sprite.Bounds().Dx())/2, -float64(c.laser.Sprite.Bounds().Dy())/2)
op.GeoM.Translate(0, -float64(c.laser.Sprite.Bounds().Dy())/2)
op.GeoM.Rotate(c.laser.GetAngle())
op.GeoM.Translate(lpos.X, lpos.Y)
c.laserMask.DrawImage(c.laser.Sprite, op)
//c.LaserAttempt1()
//c.LaserAttempt2()
//c.LaserAttempt3()
c.LaserAttempt4()
}
}
func (c *Canvas) UpdateCharge() {
if c.lastInputs.Charge && !c.charge.Active && !c.gameover {
c.charge.SetOrigin(c.hero.Pos)
c.charge.Reset()
c.charge.ToggleActivate()
if c.eventmap[gamedata.GameEventCharge] != nil {
c.eventmap[gamedata.GameEventCharge]()
}
}
c.charge.Update()
if c.charge.Active {
if c.charge.Radius > math.Sqrt(640*640+480*480) {
c.charge.ToggleActivate()
c.charge.Reset()
c.ResetTargetTouches()
}
for _, e := range c.enemies {
dx := e.GetPosition().X - c.hero.Pos.X
dy := e.GetPosition().Y - c.hero.Pos.Y
r := math.Sqrt(dx*dx + dy*dy)
if r >= c.charge.Radius-5 && r <= c.charge.Radius+5 &&
!e.IsTouched() && e.GetEnemyState() <= gamedata.EnemyStateHit {
e.SetToggle()
e.SetTouched()
}
}
}
}
func (c *Canvas) ResetTargetTouches() {
for _, e := range c.enemies {
e.ClearTouched()
}
}
func (c *Canvas) UpdateEnemies() {
//update existing enemies
for _, e := range c.enemies {
if !c.gameover {
e.SetTarget(c.hero.Pos)
if e.GetEnemyState() == gamedata.EnemyStateExploding && !e.ExplosionInitiated() {
if c.eventmap[gamedata.GameEventExplosion] != nil {
c.eventmap[gamedata.GameEventExplosion]()
}
e.SetExplosionInitiated()
}
} else {
e.SetTarget(e.GetPosition())
}
e.Update()
}
}
func (c *Canvas) SpawnEnemies() {
if !c.gameover {
if !c.goblinspawned || c.goblindead {
c.SpawnFlyEyes()
}
if !c.goblinspawned && c.counter > 2400 && !c.goblindead {
c.SpawnGoblin()
}
}
}
func (c *Canvas) SpawnFlyEyes() {
//spawn new enemies
f := 40000 / (c.counter + 1)
if c.counter%f == 0 {
newenemy := elements.NewFlyEye()
x0 := rand.Float64() * 640
y0 := rand.Float64() * 480
quadrant := rand.IntN(3)
switch quadrant {
case 0:
newenemy.SetPosition(gamedata.Coordinates{X: x0, Y: -48})
case 1:
newenemy.SetPosition(gamedata.Coordinates{X: x0, Y: 480 + 48})
case 2:
newenemy.SetPosition(gamedata.Coordinates{X: -48, Y: y0})
case 3:
newenemy.SetPosition(gamedata.Coordinates{X: 640 + x0, Y: y0})
}
newenemy.SetTarget(c.hero.Pos)
c.enemies = append(c.enemies, newenemy)
}
}
func (c *Canvas) SpawnGoblin() {
newfg := elements.NewFlyGoblin()
newfg.SetDeathEvent(c.GoblinDeathEvent)
newfg.SetFireballCallback(c.GoblinFireballEvent)
x0 := rand.Float64() * 640
y0 := rand.Float64() * 480
quadrant := rand.IntN(3)
switch quadrant {
case 0:
newfg.SetPosition(gamedata.Coordinates{X: x0, Y: -96})
case 1:
newfg.SetPosition(gamedata.Coordinates{X: x0, Y: 480 + 48})
case 2:
newfg.SetPosition(gamedata.Coordinates{X: -96, Y: y0})
case 3:
newfg.SetPosition(gamedata.Coordinates{X: 640 + x0, Y: y0})
}
c.goblin = newfg
c.enemies = append(c.enemies, newfg)
c.goblinspawned = true
}
func (c *Canvas) HasCollided(mask *ebiten.Image, size int) bool {
var result bool = false
var pixels []byte = make([]byte, size)
mask.ReadPixels(pixels)
for i := 0; i < len(pixels); i = i + 4 {
if pixels[i+3] != 0 {
result = true
break
}
}
return result
}
func (c *Canvas) RegisterEvents(e gamedata.GameEvent, f func()) {
c.eventmap[e] = f
}
func (c *Canvas) CleanupTargets() {
// remove dead targets by iterating over all targets
i := 0
for _, e := range c.enemies {
//moving valid targets to the front of the slice
if e.GetEnemyState() < elements.MoverActionDead &&
!(e.GetPosition().X < -640*2 || e.GetPosition().X > 640*2 ||
e.GetPosition().Y > 480*2 || e.GetPosition().Y < -480*2) {
c.enemies[i] = e
i++
}
}
//then culling the last elements of the slice, and conveniently we can update
//our base score with the number of elements removed (bonuses calculated elsewhere)
if len(c.enemies)-i > 0 {
c.score += len(c.enemies) - i
}
for j := i; j < len(c.enemies); j++ {
c.enemies[j] = nil
}
c.enemies = c.enemies[:i]
}
func (c *Canvas) GoblinDeathEvent() {
c.goblindead = true
c.goblinspawned = false
c.score += 10
}
func (c *Canvas) GoblinFireballEvent() {
if !c.gameover {
velocity := 8.
dx := c.hero.Pos.X - c.goblin.GetPosition().X
dy := c.hero.Pos.Y - c.goblin.GetPosition().Y
angle := math.Atan2(dy, dx)
//add some randomness to the angle
arand := rand.Float64() * math.Pi / 3
newfb := elements.NewFireBall(angle+arand, velocity)
newfb.SetPosition(c.goblin.GetPosition())
c.enemies = append(c.enemies, newfb)
if c.eventmap[gamedata.GameEventFireball] != nil {
c.eventmap[gamedata.GameEventFireball]()
}
}
}
func IsPixelColliding(img1, img2 *ebiten.Image, offset1, offset2 image.Point) bool {
// Get the pixel data from both images
bounds1 := img1.Bounds()
bounds2 := img2.Bounds()
// Create slices to hold the pixel data
pixels1 := make([]byte, 4*bounds1.Dx()*bounds1.Dy()) // RGBA (4 bytes per pixel)
pixels2 := make([]byte, 4*bounds2.Dx()*bounds2.Dy())
// Read pixel data from the images
img1.ReadPixels(pixels1)
img2.ReadPixels(pixels2)
// Determine the overlapping rectangle
rect1 := bounds1.Add(offset1)
rect2 := bounds2.Add(offset2)
intersection := rect1.Intersect(rect2)
if intersection.Empty() {
return false // No overlap
}
// Check pixel data in the overlapping region
for y := intersection.Min.Y; y < intersection.Max.Y; y++ {
for x := intersection.Min.X; x < intersection.Max.X; x++ {
// Calculate the indices in the pixel slices
idx1 := ((y-offset1.Y)*bounds1.Dx() + (x - offset1.X)) * 4
idx2 := ((y-offset2.Y)*bounds2.Dx() + (x - offset2.X)) * 4
// Extract alpha values (transparency)
alpha1 := pixels1[idx1+3]
alpha2 := pixels2[idx2+3]
// If both pixels are non-transparent, there's a collision
if alpha1 > 0 && alpha2 > 0 {
return true
}
}
}
return false // No collision detected
}
// RotatePoint rotates a point (x, y) around an origin (ox, oy) by a given angle (in radians).
func RotatePoint(x, y, ox, oy, angle float64) (float64, float64) {
sin, cos := math.Sin(angle), math.Cos(angle)
dx, dy := x-ox, y-oy
return ox + dx*cos - dy*sin, oy + dx*sin + dy*cos
}
// IsPixelCollidingWithRotation checks for pixel-perfect collision between two rotated images.
func IsPixelCollidingWithRotation(img1, img2 *ebiten.Image, center1, center2 image.Point, angle1, angle2 float64) bool {
// Get pixel data
bounds1 := img1.Bounds()
bounds2 := img2.Bounds()
pixels1 := make([]byte, 4*bounds1.Dx()*bounds1.Dy())
pixels2 := make([]byte, 4*bounds2.Dx()*bounds2.Dy())
img1.ReadPixels(pixels1)
img2.ReadPixels(pixels2)
// Loop through all pixels in the bounding boxes of the first image
for y1 := bounds1.Min.Y; y1 < bounds1.Max.Y; y1++ {
for x1 := bounds1.Min.X; x1 < bounds1.Max.X; x1++ {
// Get alpha for the pixel in img1
idx1 := (y1*bounds1.Dx() + x1) * 4
alpha1 := pixels1[idx1+3]
if alpha1 == 0 {
continue // Skip transparent pixels
}
// Rotate this pixel to its global position
globalX, globalY := RotatePoint(float64(x1), float64(y1), float64(bounds1.Dx()/2), float64(bounds1.Dy()/2), angle1)
globalX += float64(center1.X)
globalY += float64(center1.Y)
// Transform global position to img2's local space
localX, localY := RotatePoint(globalX-float64(center2.X), globalY-float64(center2.Y), 0, 0, -angle2)
// Check if the transformed position is within img2's bounds
lx, ly := int(localX)+bounds2.Dx()/2, int(localY)+bounds2.Dy()/2
if lx < 0 || ly < 0 || lx >= bounds2.Dx() || ly >= bounds2.Dy() {
continue
}
// Get alpha for the pixel in img2
idx2 := (ly*bounds2.Dx() + lx) * 4
alpha2 := pixels2[idx2+3]
if alpha2 > 0 {
return true // Collision detected
}
}
}
return false // No collision
}
func (c *Canvas) LaserAttempt1() {
//for _, e := range c.enemies {
/*
rgba1 := c.laserMask.SubImage(c.laserMask.Bounds()).(*image.RGBA)
rgba2 := e.GetSprite().SubImage(e.GetSprite().Bounds()).(*image.RGBA)
*/
// Check collision
/*
if IsPixelCollidingWithRotation(c.laser.Sprite,
e.GetSprite(),
image.Pt(int(c.laser.GetPosition().X), int(c.laser.GetPosition().Y)),
image.Pt(int(e.GetPosition().X), int(e.GetPosition().Y)),
c.laser.GetAngle(),
0,
) {
println("Pixel-perfect collision detected!")
}
*/
/*
c.collisionMask.Clear()
c.collisionMask.DrawImage(c.laserMask, nil)
op := &ebiten.DrawImageOptions{}
op.GeoM.Reset()
op.Blend = ebiten.BlendDestinationIn
op.GeoM.Translate(e.GetPosition().X-float64(e.GetSprite().Bounds().Dx())/2, e.GetPosition().Y-float64(e.GetSprite().Bounds().Dy())/2)
c.collisionMask.DrawImage(e.GetSprite(), op)
*/
/*
if c.HasCollided(c.collisionMask, 640*480*4) {
if c.eventmap[gamedata.GameEventTargetHit] != nil {
c.eventmap[gamedata.GameEventTargetHit]()
}
fmt.Println("enemy sliced")
}
*/
//}
}
// try to find if the enemy is along the laser line first, then apply pixel collision
func (c *Canvas) LaserAttempt2() {
for _, e := range c.enemies {
a := c.lastInputs.ShotAngle
x0 := c.hero.Pos.X
y0 := c.hero.Pos.Y
thresh := 25.
x := e.GetPosition().X
y := math.Tan(a)*(x-x0) + y0
var laserd bool = false
if !math.IsNaN(math.Tan(a)) {
if math.Abs(e.GetPosition().Y-y) <= thresh {
laserd = true
} else {
if math.Abs(e.GetPosition().X-x0) <= thresh {
laserd = true
}
}
}
if laserd {
//check for pixel collision
if IsPixelColliding(c.laserMask, e.GetSprite(),
image.Pt(0, 0),
image.Pt(int(e.GetPosition().X), int(e.GetPosition().Y))) {
e.SetHit()
if c.eventmap[gamedata.GameEventTargetHit] != nil {
c.eventmap[gamedata.GameEventTargetHit]()
}
fmt.Println("laser'd")
}
}
}
}
// straight up just pixel collision check, expensive though
func (c *Canvas) LaserAttempt3() {
for _, e := range c.enemies {
if IsPixelColliding(c.laserMask, e.GetSprite(),
image.Pt(0, 0),
image.Pt(int(e.GetPosition().X), int(e.GetPosition().Y))) {
e.SetHit()
if c.eventmap[gamedata.GameEventTargetHit] != nil {
c.eventmap[gamedata.GameEventTargetHit]()
}
fmt.Println("laser'd")
}
}
}
// straight up just pixel collision check, expensive though
func (c *Canvas) LaserAttempt4() {
for _, e := range c.enemies {
c.lasercoords[2] = e.GetPosition()
x0 := c.hero.Pos.X
y0 := c.hero.Pos.Y
x1 := e.GetPosition().X
y1 := e.GetPosition().Y
a := c.lastInputs.ShotAngle
var d float64 = 100
/*
if !math.IsNaN(math.Tan(a)) {
m0 := math.Tan(a)
if m0 == 0 {
d = math.Abs(y1 - y0)
fmt.Printf("horizontal beam\n")
c.lasercoords[3] = gamedata.Coordinates{X: x1, Y: y0}
} else {
m1 := -1 / m0
if (m0 - m1) != 0 {
xi := (y1 + x0*m0 - y0 - m1*x1) / (m0 - m1)
yi := xi*m0 - x0*m0 + y0
c.lasercoords[3] = gamedata.Coordinates{X: xi, Y: yi}
d = math.Sqrt(math.Pow(x1-xi, 2) + math.Pow(y1-yi, 2))
fmt.Printf("%f \n", d)
} else {
}
}
fmt.Printf("%f \n", a)
} else {
c.lasercoords[3] = gamedata.Coordinates{X: x1, Y: y1}
d = math.Abs(x1 - x0)
fmt.Printf("vertical beam\n")
}
*/
if math.Abs(math.Mod(a, math.Pi)) == math.Pi/2 { // Check for vertical beam
d = math.Abs(x1 - x0)
c.lasercoords[3] = gamedata.Coordinates{X: x0, Y: y1} // Align on x-axis
//fmt.Printf("vertical beam\n")
} else if math.Tan(a) == 0 { // Check for horizontal beam
d = math.Abs(y1 - y0)
c.lasercoords[3] = gamedata.Coordinates{X: x1, Y: y0} // Align on y-axis
//fmt.Printf("horizontal beam\n")
} else { // General case
m0 := math.Tan(a)
m1 := -1 / m0
xi := (y1 + x0*m0 - y0 - m1*x1) / (m0 - m1)
yi := xi*m0 - x0*m0 + y0
c.lasercoords[3] = gamedata.Coordinates{X: xi, Y: yi}
d = math.Sqrt(math.Pow(x1-xi, 2) + math.Pow(y1-yi, 2))
//fmt.Printf("%f \n", d)
}
//fmt.Printf("%f \n", a)
if d <= 50 && e.GetEnemyState() <= gamedata.EnemyStateHit {
if IsPixelColliding(c.laserMask, e.GetSprite(),
image.Pt(0, 0),
image.Pt(int(e.GetPosition().X), int(e.GetPosition().Y))) {
e.SetHit()
newsplash := elements.NewSplash()
//newsplash.SetPosition(c.lasercoords[3])
newsplash.SetPosition(e.GetPosition())
c.splashes = append(c.splashes, newsplash)
if c.eventmap[gamedata.GameEventTargetHit] != nil {
c.eventmap[gamedata.GameEventTargetHit]()
}
//fmt.Println("laser'd")
}
}
}
}
func (c *Canvas) UpdateSplashes() {
for _, sp := range c.splashes {
sp.Update()
}
}
func (c *Canvas) CleanSplashes() {
i := 0
for _, sp := range c.splashes {
if sp.GetAlpha() > 0 {
c.splashes[i] = sp
i++
}
}
for j := i; j < len(c.splashes); j++ {
c.splashes[j] = nil
}
c.splashes = c.splashes[:i]
}
func (c *Canvas) UpdateWeapons() {
if !c.gameover {
//check for weapon inputs
if c.lastInputs.CycleWeapon {
c.holster.CycleWeapon()
}
//now let's update some shit based on the weapon
switch c.holster.GetActiveWeapon().GetWeaponType() {
case gamedata.WeaponTypeGun:
c.AddProjectiles()
case gamedata.WeaponTypeLaser:
c.UpdateLaser()
}
} else {
c.laser.SetFiring(false)
}
}