Big push to implement 10mp fluid simulations.
This commit is contained in:
443
elements/fluidsimd.go
Normal file
443
elements/fluidsimd.go
Normal file
@@ -0,0 +1,443 @@
|
||||
package elements
|
||||
|
||||
import (
|
||||
"fluids/gamedata"
|
||||
"fluids/quadtree"
|
||||
"fmt"
|
||||
"image/color"
|
||||
"math"
|
||||
"math/rand/v2"
|
||||
|
||||
"github.com/hajimehoshi/ebiten/v2"
|
||||
"github.com/hajimehoshi/ebiten/v2/vector"
|
||||
)
|
||||
|
||||
const (
|
||||
FSDWidth = 640
|
||||
FSDHeight = 360
|
||||
FSDParticleCount = 2000
|
||||
FSDGravity = 2
|
||||
FSDParticleRadius = 2.5
|
||||
FSDDamping = .7
|
||||
FSDDeltaTimeStep = 0.5
|
||||
FSDInfluenceRadius = 30
|
||||
)
|
||||
|
||||
type FluidSimD struct {
|
||||
MappedEntityBase
|
||||
particles []*Particle
|
||||
cycle int
|
||||
particlebox *gamedata.Vector
|
||||
particlebuff *ebiten.Image
|
||||
quadtree *quadtree.Quadtree
|
||||
collisionquad quadtree.Quadrant
|
||||
paused bool
|
||||
renderquads bool
|
||||
resolvecollisions bool
|
||||
resolvers []func(particle *Particle)
|
||||
resolveridx int
|
||||
angle float64
|
||||
}
|
||||
|
||||
func NewFluidSimD() *FluidSimD {
|
||||
fsd := &FluidSimD{
|
||||
particlebuff: ebiten.NewImage(FSDParticleRadius*2, FSDParticleRadius*2),
|
||||
paused: false,
|
||||
renderquads: false,
|
||||
resolvecollisions: false,
|
||||
resolveridx: 0,
|
||||
angle: 0,
|
||||
}
|
||||
fsd.dimensions = gamedata.Vector{X: FSDWidth, Y: FSDHeight}
|
||||
|
||||
//prepare root quadtree and subsequent collision search quadrant
|
||||
quad := quadtree.Quadrant{
|
||||
Position: gamedata.Vector{X: FSDWidth / 2, Y: FSDHeight / 2},
|
||||
Dimensions: gamedata.Vector{X: FSDWidth, Y: FSDHeight},
|
||||
}
|
||||
fsd.quadtree = quadtree.New(quad, 0)
|
||||
|
||||
fsd.collisionquad = quadtree.Quadrant{
|
||||
Position: gamedata.Vector{
|
||||
X: 0,
|
||||
Y: 0,
|
||||
},
|
||||
Dimensions: gamedata.Vector{
|
||||
X: FSDParticleRadius * 2,
|
||||
Y: FSDParticleRadius * 2,
|
||||
},
|
||||
}
|
||||
|
||||
//add all resolvers to strategy list
|
||||
fsd.resolvers = append(fsd.resolvers, fsd.ResolveCollisionsA)
|
||||
fsd.resolvers = append(fsd.resolvers, fsd.ResolveCollisionsB)
|
||||
fsd.resolvers = append(fsd.resolvers, fsd.ResolveCollisionsC)
|
||||
|
||||
//initialize particles, set bounding box, prepare image buffer
|
||||
fsd.Sprite = ebiten.NewImage(FSDWidth, FSDHeight)
|
||||
fsd.particlebox = &gamedata.Vector{
|
||||
X: FSDWidth - 50,
|
||||
Y: FSDHeight - 50,
|
||||
}
|
||||
fsd.InitializeParticles()
|
||||
|
||||
vector.FillCircle(fsd.particlebuff, FSDParticleRadius, FSDParticleRadius, FSDParticleRadius, color.White, true)
|
||||
|
||||
return fsd
|
||||
|
||||
}
|
||||
|
||||
func (f *FluidSimD) Draw() {
|
||||
f.Sprite.Clear()
|
||||
|
||||
f.RenderParticles()
|
||||
f.RenderBox()
|
||||
|
||||
if f.renderquads {
|
||||
f.RenderQuadrants()
|
||||
}
|
||||
}
|
||||
|
||||
func (f *FluidSimD) Update() {
|
||||
|
||||
if f.paused {
|
||||
return
|
||||
}
|
||||
|
||||
f.RebuildQuadtree()
|
||||
f.UpdateParticles()
|
||||
|
||||
f.cycle++
|
||||
}
|
||||
|
||||
func (f *FluidSimD) UpdateParticles() {
|
||||
|
||||
dt := FSDDeltaTimeStep
|
||||
|
||||
mx, my := ebiten.CursorPosition()
|
||||
mpos := gamedata.Vector{X: float64(mx), Y: float64(my)}
|
||||
maxdeflect := 40 * dt * FSDGravity
|
||||
|
||||
gravity := gamedata.Vector{
|
||||
X: FSDGravity * dt * math.Sin(f.angle),
|
||||
Y: FSDGravity * dt * math.Cos(f.angle),
|
||||
}
|
||||
|
||||
for _, particle := range f.particles {
|
||||
//particle.Velocity.Y += FSDGravity * dt
|
||||
|
||||
particle.Velocity = particle.Velocity.Add(gravity)
|
||||
|
||||
//if inpututil.IsMouseButtonJustPressed(ebiten.MouseButtonLeft) {
|
||||
|
||||
if ebiten.IsMouseButtonPressed(ebiten.MouseButtonLeft) {
|
||||
delta := gamedata.Vector{
|
||||
X: mpos.X - particle.Position.X,
|
||||
Y: mpos.Y - particle.Position.Y,
|
||||
}
|
||||
|
||||
dist := math.Sqrt(delta.X*delta.X + delta.Y*delta.Y)
|
||||
theta := math.Atan2(delta.Y, delta.X)
|
||||
|
||||
if dist < FSDInfluenceRadius {
|
||||
|
||||
dx := dist * math.Cos(theta)
|
||||
dy := dist * math.Sin(theta)
|
||||
|
||||
if dx != 0 {
|
||||
gainx := (-1./FSDInfluenceRadius)*math.Abs(dx) + 1.
|
||||
particle.Velocity.X += 20 * gainx * -1 * math.Copysign(1, dx)
|
||||
}
|
||||
|
||||
if dy != 0 {
|
||||
gainy := (-1./FSDInfluenceRadius)*math.Abs(dy) + 1.
|
||||
particle.Velocity.Y += maxdeflect * gainy * -1 * math.Copysign(1, dy)
|
||||
}
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
particle.Position.X += particle.Velocity.X * dt
|
||||
particle.Position.Y += particle.Velocity.Y * dt
|
||||
|
||||
if f.resolvecollisions {
|
||||
f.resolvers[f.resolveridx](particle)
|
||||
}
|
||||
}
|
||||
|
||||
for _, p := range f.particles {
|
||||
f.BoundParticle(p)
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
func (f *FluidSimD) InitializeParticles() {
|
||||
|
||||
f.particles = f.particles[:0]
|
||||
|
||||
xmin := (FSDWidth-f.particlebox.X)/2 + FSDParticleRadius
|
||||
xmax := f.particlebox.X - FSDParticleRadius*2
|
||||
ymin := (FSDHeight-f.particlebox.Y)/2 + FSDParticleRadius
|
||||
ymax := f.particlebox.Y - FSDParticleRadius*2
|
||||
|
||||
for i := 0; i < FSDParticleCount; i++ {
|
||||
|
||||
p := &Particle{
|
||||
Position: gamedata.Vector{
|
||||
X: xmin + rand.Float64()*xmax,
|
||||
Y: ymin + rand.Float64()*ymax,
|
||||
},
|
||||
Velocity: gamedata.Vector{
|
||||
X: 0,
|
||||
Y: 0,
|
||||
},
|
||||
Radius: FSDParticleRadius,
|
||||
}
|
||||
|
||||
f.particles = append(f.particles, p)
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
func (f *FluidSimD) BoundParticle(p *Particle) {
|
||||
|
||||
xmin := (FSDWidth-f.particlebox.X)/2 + p.Radius
|
||||
xmax := xmin + f.particlebox.X - p.Radius*2
|
||||
|
||||
if p.Position.X > xmax {
|
||||
p.Velocity.X *= -1 * FSDDamping
|
||||
p.Position.X = xmax
|
||||
}
|
||||
|
||||
if p.Position.X < xmin {
|
||||
p.Velocity.X *= -1 * FSDDamping
|
||||
p.Position.X = xmin
|
||||
}
|
||||
|
||||
ymin := (FSDHeight-f.particlebox.Y)/2 + p.Radius
|
||||
ymax := ymin + f.particlebox.Y - p.Radius*2
|
||||
|
||||
if p.Position.Y > ymax {
|
||||
p.Velocity.Y *= -1 * FSDDamping
|
||||
p.Position.Y = ymax
|
||||
}
|
||||
|
||||
if p.Position.Y < ymin {
|
||||
p.Velocity.Y *= -1 * FSDDamping
|
||||
p.Position.Y = ymin
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
func (f *FluidSimD) RenderQuadrants() {
|
||||
clr := color.RGBA{R: 0xff, G: 0x00, B: 0x00, A: 0xff}
|
||||
|
||||
quadrants := f.quadtree.GetQuadrants()
|
||||
for _, quad := range quadrants {
|
||||
ox := float32(quad.Position.X - quad.Dimensions.X/2)
|
||||
oy := float32(quad.Position.Y - quad.Dimensions.Y/2)
|
||||
vector.StrokeRect(f.Sprite, ox, oy, float32(quad.Dimensions.X), float32(quad.Dimensions.Y), 1, clr, true)
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
func (f *FluidSimD) RenderParticles() {
|
||||
for _, particle := range f.particles {
|
||||
x0 := particle.Position.X - particle.Radius
|
||||
y0 := particle.Position.Y - particle.Radius
|
||||
op := &ebiten.DrawImageOptions{}
|
||||
op.GeoM.Translate(x0, y0)
|
||||
f.Sprite.DrawImage(f.particlebuff, op)
|
||||
}
|
||||
}
|
||||
|
||||
func (f *FluidSimD) RenderBox() {
|
||||
x0 := (FSDWidth - f.particlebox.X) / 2
|
||||
y0 := (FSDHeight - f.particlebox.Y) / 2
|
||||
vector.StrokeRect(f.Sprite, float32(x0), float32(y0), float32(f.particlebox.X), float32(f.particlebox.Y), 2, color.White, true)
|
||||
}
|
||||
|
||||
func (f *FluidSimD) RebuildQuadtree() {
|
||||
f.quadtree.Clear()
|
||||
|
||||
for _, p := range f.particles {
|
||||
if !f.quadtree.Insert(p) {
|
||||
fmt.Println("quadtree insertion failed")
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
func (f *FluidSimD) ResolveCollisionsA(particle *Particle) {
|
||||
//construct search quadrant from current particle
|
||||
quadrant := quadtree.Quadrant{
|
||||
Position: particle.Position,
|
||||
Dimensions: particle.GetDimensions(),
|
||||
}
|
||||
|
||||
//find list of possible maybe collisions, we inspect those in more detail
|
||||
maybes := f.quadtree.FindAll(quadrant)
|
||||
|
||||
sqdist := float64(particle.Radius*particle.Radius) * 4
|
||||
|
||||
for _, p := range maybes {
|
||||
if p == particle {
|
||||
continue
|
||||
}
|
||||
|
||||
pos := p.GetPosition()
|
||||
delta := gamedata.Vector{
|
||||
X: pos.X - particle.Position.X,
|
||||
Y: pos.Y - particle.Position.Y,
|
||||
}
|
||||
dist2 := delta.X*delta.X + delta.Y*delta.Y
|
||||
|
||||
if dist2 == 0 {
|
||||
// Same position: pick a fallback direction to avoid NaN
|
||||
delta.X = 1
|
||||
delta.Y = 0
|
||||
dist2 = 1
|
||||
}
|
||||
|
||||
if dist2 < sqdist {
|
||||
d := math.Sqrt(dist2)
|
||||
nx, ny := delta.X/d, delta.Y/d
|
||||
overlap := particle.Radius*2 - d
|
||||
|
||||
pos.X += nx * overlap
|
||||
pos.Y += ny * overlap
|
||||
p.SetPosition(pos)
|
||||
/*
|
||||
newpos := gamedata.Vector{
|
||||
X: pos.X + delta.X,
|
||||
Y: pos.Y + delta.Y,
|
||||
}
|
||||
p.SetPosition(newpos)
|
||||
*/
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
func (f *FluidSimD) ResolveCollisionsB(particle *Particle) {
|
||||
//construct search quadrant from current particle
|
||||
quadrant := quadtree.Quadrant{
|
||||
Position: particle.Position,
|
||||
Dimensions: particle.GetDimensions(),
|
||||
}
|
||||
|
||||
//find list of possible maybe collisions, we inspect those in more detail
|
||||
maybes := f.quadtree.FindAll(quadrant)
|
||||
|
||||
sqdist := float64(particle.Radius*particle.Radius) * 4
|
||||
|
||||
for _, p := range maybes {
|
||||
if p == particle {
|
||||
continue
|
||||
}
|
||||
|
||||
pos := p.GetPosition()
|
||||
delta := gamedata.Vector{
|
||||
X: pos.X - particle.Position.X,
|
||||
Y: pos.Y - particle.Position.Y,
|
||||
}
|
||||
|
||||
dist2 := delta.X*delta.X + delta.Y*delta.Y
|
||||
|
||||
if dist2 < sqdist {
|
||||
d := math.Sqrt(dist2)
|
||||
overlap := particle.Radius*2 - d
|
||||
theta := math.Atan2(delta.Y, delta.X)
|
||||
pos.X += overlap * math.Cos(theta)
|
||||
pos.Y += overlap * math.Sin(theta)
|
||||
p.SetPosition(pos)
|
||||
|
||||
m := p.(*Particle)
|
||||
m.Velocity.X *= -1 * FSDDamping
|
||||
m.Velocity.Y *= -1 * FSDDamping
|
||||
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
func (f *FluidSimD) ResolveCollisionsC(particle *Particle) {
|
||||
//construct search quadrant from current particle
|
||||
quadrant := quadtree.Quadrant{
|
||||
Position: particle.Position,
|
||||
Dimensions: particle.GetDimensions(),
|
||||
}
|
||||
|
||||
//find list of possible maybe collisions, we inspect those in more detail
|
||||
maybes := f.quadtree.FindAll(quadrant)
|
||||
|
||||
sqdist := float64(particle.Radius*particle.Radius) * 4
|
||||
|
||||
for _, p := range maybes {
|
||||
if p == particle {
|
||||
continue
|
||||
}
|
||||
|
||||
pos := p.GetPosition()
|
||||
delta := gamedata.Vector{
|
||||
X: pos.X - particle.Position.X,
|
||||
Y: pos.Y - particle.Position.Y,
|
||||
}
|
||||
|
||||
dist2 := delta.X*delta.X + delta.Y*delta.Y
|
||||
|
||||
if dist2 < sqdist {
|
||||
|
||||
/*
|
||||
//compute impact to this particle
|
||||
deltav1 := particle.Velocity.Subtract(p.(*Particle).Velocity)
|
||||
deltax1 := particle.Position.Subtract(p.(*Particle).Position)
|
||||
dot1 := deltav1.DotProduct(deltax1)
|
||||
mag1 := deltax1.Magnitude() * deltax1.Magnitude()
|
||||
particle.Velocity = deltax1.Scale(dot1 / mag1)
|
||||
|
||||
//compute impact to other particle
|
||||
deltav2 := p.(*Particle).Velocity.Subtract(particle.Velocity)
|
||||
deltax2 := p.(*Particle).Position.Subtract(particle.Position)
|
||||
dot2 := deltav2.DotProduct(deltax2)
|
||||
mag2 := deltax2.Magnitude() * deltax2.Magnitude()
|
||||
p.(*Particle).Velocity = deltax2.Scale(dot2 / mag2)
|
||||
*/
|
||||
|
||||
dist := math.Sqrt(dist2)
|
||||
s := 0.5 * (particle.Radius*2 - dist) / dist
|
||||
|
||||
dnorm := delta.Scale(s)
|
||||
|
||||
particle.Position = particle.Position.Subtract(dnorm)
|
||||
p.(*Particle).Position = p.(*Particle).Position.Add(dnorm)
|
||||
|
||||
}
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
func (f *FluidSimD) SetRenderQuads(v bool) {
|
||||
f.renderquads = v
|
||||
}
|
||||
|
||||
func (f *FluidSimD) RenderQuads() bool {
|
||||
return f.renderquads
|
||||
}
|
||||
|
||||
func (f *FluidSimD) SetResolveCollisions(v bool) {
|
||||
f.resolvecollisions = v
|
||||
}
|
||||
|
||||
func (f *FluidSimD) ResolveCollisions() bool {
|
||||
return f.resolvecollisions
|
||||
}
|
||||
|
||||
func (f *FluidSimD) NextSolver() {
|
||||
f.resolveridx = (f.resolveridx + 1) % len(f.resolvers)
|
||||
|
||||
}
|
||||
|
||||
func (f *FluidSimD) PreviousSolver() {
|
||||
f.resolveridx = f.resolveridx - 1
|
||||
if f.resolveridx < 0 {
|
||||
f.resolveridx = len(f.resolvers) - 1
|
||||
}
|
||||
}
|
||||
Reference in New Issue
Block a user